• Users Online: 109
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2022  |  Volume : 1  |  Issue : 1  |  Page : 39-47

A network pharmacology analysis to identify active components and targets of Moschus in treatment and rehabilitation of Bell’s palsy


1 Department of Acupuncture, Baoshan Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
2 Department of Rehabilitation, Baoshan Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
3 Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Correspondence Address:
Zhi-Dan Liu
Department of Rehabilitation, Baoshan Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2773-2398.340143

Rights and Permissions

The traditional Chinese herb, Moschus (also called She Xiang in Chinese), is used to accelerate the rehabilitation of Bell’s palsy (BP) through acupoint sticking therapy in China. However, the mechanism of its effect is not clear. In this study, we explored the pharmacological mechanism using bioinformatics analysis. We identified 59 active ingredients in Moschus using the Traditional Chinese Medicine Integrated Database, including 17-beta-estradiol, testosterone, and 2,6-decamethylene pyridine. In total, 837 differently expressed genes were identified in blood of BP patients by RNA sequencing. Finally, 33 proteins were identified with overlapping predictions by the Comparative Toxicogenomics Database and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine. Proteins of interest were closely associated with 406 Gene Ontology biological processes and 4 pathways. The hub proteins in the protein–protein interaction network were FOS, JUN, proopiomelanocortin, and G protein-coupled estrogen receptor 1. A pharmacology network was constructed with 15 active components of Moschus, 33 protein targets and four pathways. The docking model of androst-4-ene-3,17-dione and FOS-JUN complexes was predicted and constructed. The results indicated testosterone as an effective component of Moschus that may enhance BP rehabilitation by targeting FUN and the mitogen-activated protein kinase and cyclic adenosine monophosphate signaling pathways, and that docking of androst-4-ene-3,17-dione and FOS-JUN complexes might play a critical role. The findings provide a direction for future research to verify the key targets of Moschus in the treatment of BP and an application prospect in the field of facial nerve rehabilitation.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed575    
    Printed34    
    Emailed0    
    PDF Downloaded33    
    Comments [Add]    

Recommend this journal